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1. Summary

This paper presents the theoretical development of a modi�ed optimal control pilot model

based upon the optimal control model (OCM) of the human operator developed by Kleinman,

Baron, and Levison (Automatica, May 1970). This model is input compatible with the OCM and

retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with

inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for

attention allocation and perception threshold e�ects. Unlike the OCM, however, the structure

of this model allows for direct calculation of pilot and system transfer functions in pole-zero

form. An algorithm designed for easy implementation in current dynamic systems analysis and

design software is presented. This implementation may be used for interactive modi�cation of

pilot-plant parameters, direct calculation of system and pilot transfer functions, system transfer

function manipulation, and determination of system frequency responses. Example results

based upon the analysis of a tracking task using three basic dynamic systems are compared

with measured results and with similar analyses performed with the OCM and two previously

proposed simpli�ed optimal pilot models. The pilot frequency responses and error statistics

obtained with this modi�ed optimal control model are shown to compare more favorably with

the measured results than the other previously proposed simpli�ed models evaluated. Also, the

impact on the modelling results of changing the approximation of the pilot's e�ective time delay

is presented.

2. Introduction

Manual vehicular control system analysis, commonly referred to as pilot modelling, has

been a useful tool for the analysis of pilot-in-the-loop systems. Research into the modelling

of the pilot control behavior has its origins in studies of the human operator performed in

the 1940's (Elkind 1964). From then until the 1960's, research was predominantly devoted to

understanding the human as a controller of single-input/single-output systems using frequency

domain models (McRuer 1980). Since the 1960's, research has concentrated on the analysis

of more complex multivariate systems. Two basic approaches to analyzing these systems have
emerged. One is based upon extending the frequency domain methods and insights developed

for single-input/single-output systems to the multivariate case, and the other is based upon

time domain methods and optimization theory (Innocenti 1988). This report focuses on a time

domain approach.

The �rst attempt to describe the behavior of the human pilot in a time domain optimal

control framework, the optimal control model (OCM), was by Kleinman, Baron, and Levison

(Kleinman, Baron, and Levison 1970; Baron, Kleinman, and Levison 1970). The OCM is

based upon the assumption that the well-trained and motivated human controller behaves

optimally in some sense, adjusting the pilot's compensation for a given vehicle and task,

subject to human limitations. The OCM has been widely used and has been validated in a

number of tasks. It has been used to model task performance and to assess 
ying qualities, to

model human-controller-describing functions, and for both the analysis and synthesis of manual

control loops (Innocenti 1988). In the OCM, the pilot's compensation is modelled by linear-

quadratic-regulator gains (Kwakernaak and Sivan 1972), a Kalman-Bucy �lter (Kwakernaak

and Sivan 1972), and a linear predictor (Kleinman, Baron, and Levison 1970).

This paper presents the theoretical development of a modi�ed optimal control pilot model

(MOCM) based upon the OCM of Kleinman, Baron, and Levison. This MOCM is a variation

of simpli�ed optimal pilot models developed by Hess (1976), Schmidt (1979 and 1981), and

Broussard and Stengel (1977). This model is input compatible with the OCM and retains other

key aspects of the OCM. Unlike the OCM, however, the structure allows for the direct calculation

of pilot and system transfer functions in pole-zero form and is designed for easy implementation
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in current dynamic systems analysis and design software. Thus, this implementation may also
be used for interactive modi�cation of pilot and plant parameters, system transfer function
manipulation, and determination of system frequency responses.

Section 4 provides a theoretical development of the MOCM. In section 5, example results
based upon the analysis of a tracking task using three basic dynamic systems are compared
with measured experimental results (Kleinman, Baron, and Levison 1970) and similar analyses
performed using the OCM and two previously proposed simpli�ed optimal control pilot models
(Hess 1976; Schmidt 1979).

3. Symbols

A system dynamic matrix

ath observation threshold

B system control matrix

C system output matrix

D system control to output matrix

E system disturbance matrix

E1 steady-state expected value

e tracking error

erfc error function

F Kalman �lter gain matrix

f cost function control-rate weighting

fy fraction of total attention

gi ith regulator gain

gp regulator gain vector

H pilot compensation transfer function

Jp pilot objective function

K regulator Ricatti solution

k transfer function gain

LQG linear quadratic Gaussian

lp pilot control gain vector

l1 augmented pilot control gain vector

MOCM modi�ed optimal control pilot model

n vector dimension

OCM optimal control model

Qo augmented weighting matrix

Qy cost function output weighting matrix

r cost function control weighting

rms root mean square
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s Laplace variable

t time

u control

Vu control noise intensity matrix

Vy observation noise intensity matrix

vdist velocity disturbance

vp pilot disturbance

vu control noise disturbance

vy observation noise disturbance

W state noise intensity matrix

W1 augmented noise intensity matrix

w state disturbance

x plant and disturbance state vector

xd Pade delay state vector

xdist position disturbance

y pilot observation vector

� pilot input to plant

� system output

� signal-to-noise ratio

�1 �lter Ricatti solution matrix

� variance

� e�ective time delay

�� \neuromotor" lag

� augmented state vector

Subscripts:

c pilot commanded control

d delay

o control-rate augmented system

obs pilot observed

p pilot

s plant and delay augmented system

th threshold

w state disturbance

x state

y output

� pilot-plant input

1 plant and pilot augmented system
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Superscripts:

T transpose

�1 inverse

� optimal

A dot over a symbol denotes a derivative with respect to time; a carat over a symbol denotes
an estimate.

4. Theoretical Development

This section presents a theoretical development of the modi�ed optimal control pilot model
(MOCM). A block diagram of the model components of the MOCM is given in �gure 1. The
notation has been chosen to be compatible with the OCM development (Kleinman, Baron, and
Levison 1970). To simplify the notation, this development considers the case of a single control
input, although the algorithm can easily be extended to account for multiple inputs.

The plant dynamics to be controlled, augmented with plant disturbance dynamics, are given
by the state space time invariant linear equations:

_x = Ax+B� +Ew

y = Cx+D�

)
(4:1)

where x(t) is an nx-dimensional state vector composed of both plant and system disturbance
states, �(t) is a scalar plant input, w(t) is an nw-dimensional disturbance vector modelled as a
zero mean Gaussian white noise process with intensity W, and y(t) is an ny-dimensional output
vector.

The vector yobs(t), of dimension ny, represents variables the pilot can perceive, either by
observation or feel. The outputs observed by the pilot are assumed to be corrupted by an
observation noise, vy(t), a zero mean Gaussian white noise process with intensity Vy:

yobs = Cx+D� + vy

In the MOCM, the pilot's e�ective time delay is modelled by a Pade approximation. The
pilot's e�ective time delay is placed at each of the pilot's outputs and is treated as part of the
plant dynamics for determination of the pilot's regulation and �lter gains. Since typically the

u
d cu

Delay Gains Estimator
Neuro-

+

+

y

yobs

Observation

Disturbances
w

Displays
δ x

x̂pu

Control noise
u

yv
v

Plant

Pilot

motor
lag

noise

Figure 1. Conceptual block diagram of modi�ed optimal control model.
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pilot is modelled as having more inputs (observations) than outputs (plant inputs), placing the
e�ective time delay at his output yields a lower order representation than placing the delay
at his input. A second-order Pade approximation is chosen because it provides a very good
approximation to a pure delay over the pilot's frequency range of interest (approximately 0.1
to 10 rad/sec). Use of at least a second-order Pade approximation is assumed to be necessary
to accurately model pilot magnitude and phase compensation at the high end of the pilot's
bandwidth, such as the pilot high frequency neuromotor resonant peak. Accurate representations
of the pilot's resonant peak and phase compensation near crossover are necessary when concerned
with using the model to explore pilot-vehicle dynamic interactions or predict pilot workload in
a given task (Anderson and Schmidt 1987; Bacon and Schmidt 1983).

A second-order Pade approximation is given by

ud

up
=

1� 1

2
(� s) + 1

8
(�s)2

1 + 1

2
(�s) + 1

8
(�s)2

(4:2)

where � is the delay interval (in seconds), up is the pilot's output, and ud is the delayed pilot's
output. In state space form, this can be expressed by

_xd = Adxd +Bdup

� = ud = Cdxd + up

)
(4:3)

where xd is a two-element vector of Pade delay states.

The plant dynamics augmented with the pilot's e�ective time delay are given by

d
dt

�
x

xd

�
=

�
A BCd

0 Ad

��
x

xd

�
+

�
B

Bd

�
up +

�
E

0

�
w

y = [C DCd ]

�
x

xd

�
+Dup

9>>=
>>; (4.4a)

or

_xs = Asxs +Bsup + Esw

y = Csxs +Dsup

)
(4.4b)

The pilot's observation vector is given by

yobs = Csxs +Dsup +vy

This model makes the assumption that the pilot's control task can be de�ned by the
minimization of the quadratic performance index Jp given by

Jp = E1

n
yTQyy + u2pr + _u2pf

o
(4:5)

subject to pilot observations yobs with cost functional weightings Qy � 0, r � 0, and f > 0. By
de�ning a new state vector as

�
T = [xs up ]

T
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the system given by equations (4.4) can be expressed in a control-rate formulation (Kwakernaak
and Sivan 1972) as

d
dt

8<: x

xd
up

9=; =

24A BCd B

0 Ad Bd

0 0 0

358<: x

xd
up

9=;+

24 00
1

35 _up +

24E0
0

35w
yobs = [C DCd D ]

8<: x

xd
up

9=;+ vy

9>>>>>>=>>>>>>;
(4.6a)

or
_� = Ao�+Bo _up +Eow

yobs = Co�+ vy

)
(4.6b)

The minimizing control law is obtained by application of LQG solution techniques (Kwaker-

naak and Sivan 1972) to the augmented system (eqs. (4.6)); this leads to the full-state feedback

relation

_u�p = �gpb� = � [g1; : : : ; gn; gn+1] b� = �f�1 (Bo)
T Kb� (4:7)

where n = nx + 2 (system states plus two Pade states), b� is the estimate of the state �, and K

is the unique positive de�nite matrix solution of the Ricatti equation

0 = (Ao)
T K +KAo +Qo �KBof

�1 (Bo)
T K (4:8)

where

Qo =

"
(Cs)

T QyCs (Cs)
T QyDs

(Ds)
T QyCs (Ds)

T QyDs + r

#
By expanding the optimal control law (eq. (4.7)) in terms of x̂s and u�p

_u�p = � [g1; : : : ; gn] x̂s � gn+1u
�

p (4:9)

and letting

�� =
1

gn+1

and

lp = �� [g1; : : : ; gn]

one obtains

�� _u
�

p + u�p = uc (4:10)

where the pilot's commanded control uc is given by

uc = �lpx̂s (4:11)

To account for the uncertainty of the human operator's control input, control noise vu is added

to the commanded control uc:

�� _up + up = uc + vu (4:12)

where vu(t) is a zero mean Gaussian white noise process with intensity Vu. As in the OCM

development, the controller gains are assumed not to be a�ected by the inclusion of the control
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noise (Kleinman, Baron, and Levison 1970). This assumption reduces the solution of the MOCM
to a suboptimal control law. Solving for _up, one obtains

_up =
�1

��
up +

1

��
uc +

1

��
vu (4:13)

Combining equations (4.6) and (4.13) gives

d
dt

8<: x

xd
up

9=; =

24A BCd B

0 Ad Bd

0 0 �1=��

358<: x

xd
up

9=; +

24 0
0

1=��

35 uc +

24E 0
0 0
0 1=��

35�w
vu

�

yobs = [C DCd D ]

8<: x

xd
up

9=; +vy

9>>>>>>=>>>>>>;
(4.14a)

or
_� = A1�+B1uc +E1w1

yobs = C1�+ vy

)
(4.14b)

The current estimate of the state b� is given by a Kalman �lter

_b� = A1b�+B1uc +F (yobs � ŷ)

_b� = (A1 � FC1) b�+ FC1�+B1uc + Fvy

)
(4:15)

where

F = �1 (C1)
T
�
Vy

�
�1

The covariance matrix of the estimation error �1 is the unique positive de�nite solution of
the Ricatti equation:

0 = A1�1 +�1 (A1)
T +W1 ��1 (C1)

T
�
Vy

�
�1
C1�1 (4:16)

where W1 = diag(W;Vu) with W � 0;Vu � 0, and Vy > 0.

A state space representation of the closed-loop pilot-vehicle system is given by

d
dt

�
�b�
�
=

�
A1 �B1l1
FC1 A1 �B1l1 � FC1

��
�b�
�
+

�
E1 0
0 F

��
w1

vy

�
�
yobs
�

�
=

�
C1 0
C� 0

��
�b�
�

9>>=>>; (4:17)

where l1 = [ lp 0 ] and C� = [0 Cd 1 ].

A block diagram of the model components of the pilot's dynamics is given in �gure 2. A
state space representation of the pilot's dynamics is given by

d
dt

8<
:
b�
up

xd

9=
; =

2
4A1 � FC1 �B1l1 0 0

l1=�� �1=�� 0
0 Bd Ad

3
5
8<
:
b�
up

xd

9=
;+

2
4F0
0

3
5y+

2
4F 0
0 1=��
0 0

3
5�vy

vu

�

� = [ 0 1 Cd ]

8<
:
b�
up

xd

9=
;

9>>>>>>=
>>>>>>;

(4.18a)
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or
_xp = Apxp +Bpy +Epvp

� = Cpxp

)
(4.18b)

Predictor EstimatorNeuro-

+

+

y

Observation

Disturbances
w

Displays
xpu

Control noise

yv
uv

Plant

Pilot

Control

+

+ Time

lag
motor law delay

noise

Figure 2. Conceptual block diagram of optimal control model.

4.1. OCM Overview

For reference, a brief description of the OCM is presented. A conceptual block diagram of
the OCM is given in �gure 2. For a more detailed description the reader is referred to Kleinman,
Baron, and Levison 1970. The OCM of the pilot is based on the assumption that the pilot
chooses the control input in such a way as to minimize the quadratic cost function:

JOCM = E1

n
yTQyy + u2pr + _u2pf

o

The weighting matrices in the cost function are chosen to re
ect the task objectives and pilot
physiological limitations. The human perception characteristics that are modelled involve pilot
observations passed through a pure time delay and corrupted by white noise vy:

yobs (t) = y (t � �) + vy (t � �)

The solution to this optimization problem yields a Kalman �lter to estimate the delayed
states and a least-mean-squares predictor to obtain a current estimate of the states x̂. The
control law, obtained from minimizing the cost function JOCM for a scalar control input up is
given by

�� _up + up = uc (t) + vu (t)

uc (t) = �KOCM x̂ (t)

where KOCM is the optimal pilot control gain vector and �� is the pilot neuromotor lag obtained
by including control rate in the cost function.

The MOCM is based on the same premise as the OCM|the assumption that the well-trained
and motivated human controller adjusts his compensation, subject to human limitations, for a
given vehicle and task to minimize an objective function. Similarities to the OCM structure
include a linear quadratic solution for the pilot gains with inclusion of control rate in the cost
function, a Kalman estimator, and the ability to account for attention allocation and perception
threshold e�ects. The major di�erence between the OCM and the MOCM is the replacement of
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the linear predictor of the OCM by the augmentation of the system dynamics with the pilot's
e�ective time delay before calculation of pilot control and estimation gains. This di�erence
allows for the direct calculation of the pilot and system transfer functions in pole-zero form in
the MOCM.

4.2. MOCM Pilot Parameters

The pilot cost function weighting matrices Q and r are chosen to re
ect the pilot task
objective. Values for e�ective time delay, neuromotor lag, observation, and control noise
intensities are chosen in the same manner as for the OCM (Kleinman, Baron, and Levison
1970). Appropriate values of neuromotor lag �� are obtained by appropriate choice of pilot cost
function control-rate weighting f . Manual control experiments have shown that the e�ective
time delay of the pilot � is typically 0.1 to 0.2 second (Kleinman, Baron, and Levison 1970).

The covariance of the observation noise Vy is dependent upon the nature of the display,
human limitations, and the pilot's environment. Over a wide range of viewing conditions, each
diagonal element of the observation noise intensity matrix is proportional to the variance of its
associated observed output variable. The diagonal elements of the noise intensity matrix are
given by

Vyi
=

��yi
fyi

�2yi

erfc
�
athi

=�yi
p
2
� �

i = 1; 2; : : : ; ny
�

(4.19)

where �yi is the nominal full-attention observation signal-to-noise ratio, fyi is the fraction of
total attention spent on the ith observation variable, athi

is the minimum observation threshold

of the ith observation variable, and �2yi is the variance of the ith observation. Single-axis manual
tracking control tasks have shown that, on the average, �yi = 0:01, which corresponds to a
normalized observation noise of �20 dB (Kleinman, Baron, and Levison 1970).

The covariance of the control noise Vu is assumed to be proportional to the variance of the
commanded control uc:

Vui
= ��ui

�2ui
(i = 1; 2; : : : ; nu) (4.20)

where �u is the control signal-to-noise ratio. Analyses of single-axis manual tracking control task
experiments have shown that typically �ui

= 0:003, which corresponds to a normalized control
noise ratio of �25 dB (Kleinman, Baron, and Levison 1970).

4.3. MOCM Algorithm Implementation

The MOCM algorithm is organized into four major parts. The �rst part involves augmen-
tation of the plant and disturbance dynamics with a Pade approximation of the pilot's e�ective
time delay. The second part is the calculation of the pilot's control gains, where iteration on
the cost function control-rate weighting is usually required to achieve the desired value of pilot's
neuromotor time constant. The third part is the calculation of the pilot's estimation gains. This
requires the calculation of observation and control noise covariances to yield desired signal-to-
noise ratios for the pilot model. At this step, the observation noise covariance may be adjusted
to take into account pilot scanning behavior and observation threshold e�ects. The fourth part
involves formation of pilot and closed-loop system matrices and calculation of transfer functions,
frequency responses, and statistics of interest. A conceptual 
owchart of the MOCM algorithm
is given as appendix A.

The structure of this model is designed for easy implementation in current dynamic systems
analysis and design software. Implementation in this type of computer software environment
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allows for rapid calculation of pilot and system transfer function descriptions from state space
models, determination of system frequency responses, and easy manipulation of system state
space and frequency domain representations. Also, this environment allows users to interactively
modify various pilot and plant parameters and quickly ascertain the impact of these changes on
pilot/closed-loop performance.

Section 5 presents an evaluation of the MOCM by applying it to model the piloted dynamics
of a compensatory tracking task.

5. Model Evaluation

In this section, experimental results based upon the analysis of the closed-loop performance
of a pilot in a tracking task for three basic dynamic systems presented in Kleinman, Baron,
and Levison 1970 are used as a benchmark to determine the merits of the MOCM. The analysis
obtained with this model is compared with similar analyses performed with the OCM and two
previously proposed LQG based pilot models|an LQG approximation to the OCM presented
by Schmidt (LQG model) (Schmidt 1979), and a pilot model proposed by Hess (Hess model)
(Hess 1976). The LQG model includes a control-rate term in the pilot cost function and a
Kalman estimator but does not include an explicit model of the pilot's e�ective time delay. The
Hess model does not include a control-rate term in the pilot's cost function but does include a
Kalman estimator and a modelling of the pilot's e�ective time delay. In this model, the pilot's
neuromotor dynamics are modelled by a �rst-order lag at the pilot's output. A description of
these models is given in appendixes B and C. Also, the impact of changing the order of the
Pade approximation (approximation of pilot's e�ective time delay) upon the MOCM results is
presented.

Descriptions of the three basic dynamic systems, the tracking task, and parameters chosen
for the modelling analysis are presented next. This discussion parallels that in Kleinman, Baron,
and Levison 1970.

5.1. Experimental Setup

The compensatory tracking task performed and analyzed by Kleinman, Baron, and Levison
used three basic command systems|a velocity command system, an acceleration command
system, and a position command system. In these experiments, the human controller had a
single control manipulator and observed tracking error on a display. The assumption was made
that the pilot could determine tracking error rate information from the tracking error display. A
system disturbance, composed of a sum of sinusoids, was applied as a velocity disturbance for the
velocity and acceleration command tasks and as a position disturbance for the position command
task. The amplitudes of the sine waves were chosen to simulate a �rst-order noise spectrum for
the velocity disturbance and a second-order noise spectrum for the position disturbance, both
with a break frequency of 2 rad/sec. In these tracking tasks, the human controller was instructed
to minimize mean-square tracking error. A more complete description of the experimental setup
is given in Kleinman, Baron, and Levison 1970 and Baron et al. 1970.

5.2. Task Modelling

For the pilot modelling analysis of the three tracking experiments, the pilot's ob jective
function Jp was modelled as

Jp = E1

n
e2 + f _�2

o
(5:1)

where e is pilot tracking error. The system input disturbances were modelled as a white noise
process passed through a �rst-order low pass �lter for the velocity and acceleration command
dynamics and passed through a second-order low pass �lter for the position command dynamics.
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A summary of the pilot model input parameters for analysis of each of the plant dynamics is
presented in table I. Identical values were used for the analysis performed with the OCM and
LQG models. For the Hess model, identical input values were used with the exception of control
weighting, which was chosen to match the rms error statistics of the experimental data. Since
this is a single-axis task using a single display indicator, the e�ects of attention allocation and
thresholds were assumed small and were not modelled.

Table I. Pilot Model Input Parameters

Input Velocity Acceleration Position
parameter command command command

E�ective time delay, � 0.15 sec 0.21 sec 0.15 sec

Neuromotor lag,a �� 0.08 sec 0.1 sec 0.11 sec

Observation noise ratio, �y �20 dB �20 dB �20 dB

Motor noise ratio, �u �25 dB �25 dB �25 dB

System disturbance
vdist

w
= 1

s + 2

vdist

w
= 1

s + 2

xdist

w
= 1

s2 + 4s + 4

Disturbance intensity, W 8.8 0.217 10.0

Objective function observation weights, Qy diag(1,0) diag(1,0) diag(1,0)

Objective function input weights, r b0, 0, 0, 0.034 b0, 0, 0, 0.01 b0, 0, 0, 0.0012

aCost function weighting f is chosen to achieve desired �� in MOCM, OCM, and LQOCM.
bMOCM, OCM, LQOCM, HOCM.

5.2.1. Velocity command system. The dynamics of the system to be controlled in transfer
function form are given by

�

�
=

k

s
(5:2)

with k = 1. The velocity disturbance was modelled by white noise passed through a �rst-order
�lter with a break frequency of 2 rad/sec:

vdist
w

=
1

s + 2
(5:3)

In state space form, the combined plant and disturbance dynamics, expressed in terms of system
disturbance and command tracking error, are given by

d

dt

�
vdist
e

�
=

�
�2 0
1 0

��
vdist
e

�
+

�
0
1

�
� +

�
1
0

�
w (5:4)

The observed system outputs are given by

yobs =

�
e

_e

�
=

�
0 1
1 0

��
vdist
e

�
+

�
0
1

�
� + vy

where e and _e are pilot tracking error and pilot tracking error rate, respectively.
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With the MOCM, a transfer function description of the human pilot's compensation can be
determined directly from the state space description, relating the two inputs to the pilot, e and
_e, to the single output, �, as follows:

� = H�ee+H� _e _e (5:5)

where H�e and H� _e are pilot tracking error to � and pilot tracking error rate to � transfer
functions, respectively. Since the H�e and H� _e transfer functions are not directly measurable,
an equivalent transfer function must be formed for comparison with the measured data. The
equivalent pilot transfer function is given by

�

e
= H�e + sH� _e (5:6)

5.2.2. Acceleration command system. For the acceleration command system, the dynam-
ics of the system to be controlled, in transfer function form, are given by

�

�
=

k

s2
(5:7)

with k = 1. The disturbance to the system was modelled as a velocity disturbance by passing
white noise through a �rst-order �lter with a break frequency at 2 rad/sec:

vdist

w
=

1

s + 2

In state space form, the combined plant and disturbance dynamics are given by

d

dt

8<
:

vdist

e

x3

9=
; =

2
4�2 0 0

1 0 1
0 0 0

3
5
8<
:

vdist

e

x3

9=
; +

2
4 0
0
1

3
5 � +

2
4 10
0

3
5w (5:8)

The observed system outputs are

yobs =

�
e

_e

�
=

�
0 1 0
1 0 1

�8<
:

vdist

e

x3

9=
;+ vy

where xi is a plant state.

5.2.3. Position command system. In order to reduce high frequency noise, the pure gain
dynamics of the position command system were approximated by a low pass �lter with a break
frequency at 40 rad/sec. Therefore, the plant dynamics to be controlled are given by

�

�
=

40

s+ 40
(5:9)

The position disturbance was modelled by white noise passed through a second-order �lter with
a break frequency of 2 rad/sec and a damping of unity:

xdist

w
=

1

s2 + 4s+ 4
(5:10)
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In state space form the combined plant and disturbance dynamics are given by

d

dt

8<
:

xdist1
xdist2
x3

9=
; =

2
4 0 1 0
�4 �4 0
0 0 �40

3
5
8<
:

xdist1
xdist2
x3

9=
;+

2
4 0

0
40

3
5 � +

2
4 0
1
0

3
5w (5:11)

The observed system outputs are

yobs =

�
e

_e

�
=

�
1 0 1
0 1 �40

�8<
:

xdist1
xdist2
x3

9=
; +

�
0
40

�
� + vy

where xdisti
is a disturbance state and x3 is a plant state.

5.3. Discussion of Examples

The measured human-describing functions and model-based analysis results obtained for the
velocity command system are given in �gure 3. For this command system, the MOCM pro-
vides a very good prediction of the measured magnitude and phase in the frequency range from
approximately 1 to 30 rad/sec. Note also that the MOCM prediction provides an accurate mod-
elling of the pilot's neuromotor resonant peak. The measured human-describing functions and
analysis results obtained for the acceleration command system are given in �gure 4. The MOCM

M
ag

ni
tu

de
, d

B

0

5

10

15

20

25

30

35

40

-500

-400

-300

-200

-100

0

100

.1 1 10 100
Frequency, rad/sec

Measured data

MOCM
LQG model
OCM
Hess model

Measured data

MOCM
LQG model
OCM
Hess model

Ph
as

e,
 d

eg

-500

-400

-300

-200

-100

0

100

.1

Ph
as

e,
 d

eg

1 10 100
Frequency, rad/sec

Measured data

MOCM
LQG model
Hess model
OCM

Measured data

MOCM
LQG model
Hess model
OCM

M
ag

ni
tu

de
, d

B

0

5

10

15

20

25

30

35

40

Figure 3. Measured human-describing functions and

model-based pilot transfer functions for velocity

command system. Measured data from Kleinman,

Baron, and Levison 1970.

Figure 4. Measured human-describing functions and

model-basedpilot transfer functions for acceleration

command system. Measured data from Kleinman,

Baron, and Levison 1970.
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provides a very good prediction of the measured magnitude and phase in the frequency range
from approximately 1 to 20 rad/sec. The measured human-describing functions and model-
based analysis results obtained for the position command system are given in �gure 5. For this
command system, the MOCM provides a fair prediction of the measured magnitude and a very
good prediction of the measured phase in the frequency range from approximately 1 to 20 rad/sec.
As can be seen from �gures 3 through 5 the model-based pilot transfer functions obtained with
the MOCM compare very favorably with the predictions of the OCM for each command system.
Also, overall the MOCM provides a better match to the measured human-describing functions
than either the LQG model or the Hess model for the given pilot model input parameters. (The
reader should note that a better match to the measured human-describing functions may be
possible with the LQG and Hess models by varying the pilot model input parameters.)

Measured and model-based rms pilot performance is presented in table II. As can be seen,
the model-based rms pilot performance obtained from the MOCM analysis is in good agreement
with the measured rms statistics for each task. The OCM also provides a favorable match to
the measured rms performance. Pilot transfer functions obtained from the MOCM analysis are
presented in table III.

The e�ect on the pilot transfer function for the velocity command system of replacing the
MOCM's modelling of the pilot's e�ective time delay (a second-order Pade approximation) with
a �rst- and third-order Pade approximation is presented in �gure 6. As can be seen, at least
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Figure 5. Measured human-describing functions and

model-based pilot transfer functions for position

command system. Measured data from Kleinman,

Baron, and Levison 1970.

Figure 6. Modelling pilot's e�ective time delay by var-

ious Pade approximations and measured human-

describing functions for velocity command system.

Measured data from Kleinman,Baron, and Levison

1970.
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a second-order Pade approximation is required to capture the pilot's high frequency dynamic

compensation characteristics in this task. This tends to suggest a connection between the pilot's

e�ective time delay and high frequency neuromotor resonant peak.

Table II. Measured and Model-Based rms Pilot Performance

Velocity command Acceleration command Position command

Error Error Error

Data Error rate Control Error rate Control Error rate Control

Measureda 0.36 1.76 2.05 0.12 0.32 1.20 0.36 2.19 0.73

MOCM 0.34 1.75 1.97 0.12 0.33 1.17 0.27 2.26 0.47

OCM 0.34 1.72 1.94 0.11 0.32 1.07 0.27 2.28 0.47

LQG model 0.14 1.03 1.63 0.07 0.23 0.87 0.16 2.22 0.52

Hess model 0.36 1.53 1.70 0.12 0.28 0.68 0.36 6.14 0.55

aMeasured rms pilot performance data taken from Kleinman, Baron, and Levison 1970.

Table III. Summary of MOCM Pilot Transfer Functions

Model-based pilot transfer functions

Command (a)

Velocity �

e
=

181:2(3:26)(6:37)(12:74)(�0:707;18:86)

(1:99)(6:44)(12:49)(0:264;20:99)(35:33)

Acceleration �

e
=

443:3(0:47)(2:32)(3:29)(10:03)(�0:707;13:47)

(2:00)(3:22)(9:99)(0:256;10:08)(0:820;18:22)

Position �

e
=

10:19(4:14)(9:14)(11:55)(�0:707;18:86)(40:70)

(1:45)(2:80)(9:10)(11:37)(0:389;24:76)(71:65)

a( ) = Real pole or Zero; ( ; ) = (�; !) = Damping and

Frequency of complex pole or zero pair.

6. Concluding Remarks

This paper has presented a modi�ed optimal control model (MOCM) based upon the optimal

control model (OCM) developed by Kleinman, Baron, and Levison (Automatica, May 1970).

This model is input compatible with the OCM and retains other key aspects of the OCM, such as

the linear quadratic solution for the pilot gains with inclusion of control rate in the cost function,

a Kalman estimator, and the ability to account for attention allocation and perception threshold

e�ects. An algorithm designed for easy implementation in current dynamic systems analysis

and design software has been presented. Implementation in this type of environment allows for

rapid calculation of pilot and system transfer function descriptions from state space models,

determination of system frequency responses, and ease of system state space and frequency

representations.
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The MOCM was used to predict closed-loop pilot performance in a compensatory tracking
task for three basic dynamic systems. These predictions were compared with measured pilot
performance and shown to provide a very good modelling of both pilot-describing functions and
time domain performance statistics for these dynamic systems. Also, the predicted models
obtained with the MOCM were compared with similar analyses performed with the OCM
and two previously proposed LQG (linear quadratic Gaussian) based pilot models|an LQG
approximation to the OCM and a model proposed by Hess. The MOCM is shown to provide
results very similar to those of the OCM and to compare more favorably with the measured pilot
performance than the other pilot model predictions.

In this formulation, use of at least a second-order Pade approximation is required in order
to accurately model pilot magnitude and phase compensation at the high end of the pilot's
bandwidth, such as the pilot high frequency neuromotor resonant peak. This tends to suggest
a connection between the pilot's e�ective time delay and high frequency neuromotor resonant
peak.

NASA Langley Research Center

Hampton, VA 23681-0001

August 13, 1992
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Appendix A

Modi�ed Optimal Control Pilot Model Flowchart

Augment system matrices with 
delay dynamics

(eqs. (4.4))

Create control-rate 
formulation
(eqs. (4.6))

Calculate pilot gains
(eqs. (4.7) and (4.8))

Achieved desired 
value of 

neuromotor
lag?

Adjust control-rate 
weighting
(eq. (4.5))

Augment system with lag 
dynamics

(eqs. (4.14))

No

Yes

Load system matrices 
(eqs. (4.1))

and 
pilot control parameters

(see table I)
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Generate initial guess for observation 
and control noise intensities  

Calculate effects of fractions of 
attentions and thresholds on 

observation noise
(eq. (4.19)) 

Calculate estimator gains
(eqs. (4.15) and (4.16))

Form closed-loop system
(eqs. (4.17))

Calculate achieved observation and 
control noise-to-signal ratios

Achieved desired 
noise-to-signal 

ratios?

Adjust values of observation and 
control noise intensities

No

Yes
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Calculate closed-loop eigenvalues 
and rms output values

Form pilot matrices
(eqs. (4.18))

Generate system and pilot frequency 
responses and transfer functions

Adjust input parameters and 
reanalyze or end analysis
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Appendix B

LQG Approximation to Optimal Pilot Model

This appendix presents a theoretical development of an LQG approximation to the optimal

pilot model (Schmidt 1979). The plant dynamics to be controlled, augmented with the

disturbance dynamics, are given by the state space time invariant linear equations

_x = Ax+B� +Ew

y = Cx+D�

)
(B1)

where x(t) is an n-dimensional state vector, �(t) is an nu-dimensional vector of pilot inputs,

w(t) is an nw-dimensional disturbance vector modelled as zero mean Gaussian white noise with

covarianceW, and y(t) is an ny-dimensional output vector. The vector yobs(t), of dimension ny,

represents variables the pilot can perceive, either by observation or feel. The outputs observed

by the pilot are assumed to be corrupted by an observation noise vy(t), a zero mean Gaussian

white noise process with covariance Vy, as follows:

yobs = Cx+D� + vy

The following development considers the case of a scalar pilot input �.

The pilot's control task is assumed to be modelled as the minimization of the quadratic

performance index Jp given by

Jp = E1

n
yTQyy + �Tr� + _�T f _�

o
(B2)

subject to pilot observations yobs with cost functional weightingsQy � 0; r � 0, and f > 0.

By de�ning a new state vector as

�
T = [x � ]T

the augmented system can be expressed in a control-rate formulation as

d
dt

�
x

�

�
=

�
A B

0 0

��
x

�

�
+

�
0

1

�
_� +

�
E

0

�
w

y = [C D ]

�
x

�

�
9>>=>>; (B3a)

or
_� =Ao� +Bo

_� + Eow

y = Co�

yobs = Co�+ vy

9>=>; (B3b)

The minimizing control law is obtained by application of LQG solution techniques to the

augmented system. This leads to the full-state feedback relation

_� = �gpb� = � [g1; : : : ; gn; gn+1] b� = �f�1 (Bo)
T Kb� (B4)

where b� is the estimate of the state � andK is the unique positive de�nite solution of the matrix

Ricatti equation

0 = (Ao)
T K +KAo +Qo �KBof

�1 (Bo)
T K (B5)
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where

Qo =

�
CTQyC CTQyD

DTQyC DTQyD+ r

�
By expanding the optimal control law in terms of x̂ and �

_� = � [g1; : : : ; gn] x̂� gn+1� (B6)

and letting

�� =
1

gn+1

and

lp = �� [g1; : : : ; gn]

then

��
_� + � = uc (B7)

where the pilot's commanded control uc is given by

uc = �lpx̂ (B8)

To account for the uncertainty of the human operator's control input, control noise vu is added

to the commanded control uc
��

_� + � = uc + vu (B9)

leading to

_� =
�1

��
� +

1

��
uc +

1

��
vu (B10)

where vu is a zero mean Gaussian white noise process with covariance Vu. By combining this
result with the original control-rate formulation, one obtains the augmented system

d
dt

�
x

�

�
=

�
A B

0 �1=��

��
x

�

�
+

�
0

�1=��

�
uc +

�
E 0
0 1=��

��
w

vu

�
yobs = [C D ]

�
x

�

�
+vy

9>>=>>; (B11a)

or
_� = A1�+B1uc +E1w1

yobs = C1�+ vy

)
(B11b)

The current estimate of the state is given by a Kalman �lter

_b� = A1b�+B1uc +F (yobs � ŷ)

_b� = (A1 � FC1) b�+ FC1�+B1uc + Fvy

)
(B12)

where

F = �1 (C1)
T
�
Vy

�
�1

The covariance matrix of the estimation error �1 is the unique positive de�nite solution of

the matrix Ricatti equation

0 = A1�1 +�1 (A1)
T +W1 ��1 (C1)

T
�
Vy

�
�1
C1�1 (B13)
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where W1 = diag(W;Vu). A state space representation of the closed-loop system is given by

d
dt

�
�b�
�

=

�
A1 �B1l1
FC1 A1 �B1l1 � FC1

��
�b�
�
+

�
E1 0
0 F

��
w1

vy

�
�
yobs
uc

�
=

�
C1 0
0 �l1

��
�b�
�

+

�
vy
0

�
9>>=>>; (B14)

where l1 = [ lp 0 ]. A state space representation of the pilot's dynamics is given by

d
dt

� b�
�

�
=

�
A1 � FC1 �B1l1 0

�1=�� �1=��

�� b�
�

�
+

�
F

0

�
y+

�
F 0
0 1=��

��
vy
vu

�
� = [0 1 ]

� b�
�

�
9>>=>>; (B15a)

or
_xp = Apxp +Bpy+Epvp

� = Cpxp

)
(B15b)
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Appendix C

Hess's LQG-Based Pilot Model

This appendix presents a theoretical development of Hess's LQG-based pilot model (Hess
1976). The plant dynamics to be controlled, augmented with the disturbance dynamics, are
given by the state space time invariant linear equations

_x = Ax+B� +Ew

y = Cx+D�

)
(C1)

where x(t) is an n-dimensional state vector, �(t) is an nu-dimensional vector of pilot inputs,
w(t) is an nw-dimensional disturbance vector modelled as zero mean Gaussian white noise with
covarianceW, and y(t) is an ny-dimensional vector of outputs. The vector yobs, of dimension ny,
represents variables the pilot can perceive, either by observation or feel. The outputs observed
by the pilot are assumed to be corrupted by an observation noise vy(t), a zero mean Gaussian
white noise process with intensity Vy:

yobs = Cx+D� + vy

The following development is for the case of a scalar pilot input �.

The pilot's e�ective time delay is modelled by a second-order transfer function given by

ud
uc

=
(s � 4=�)2

(s + 4=�)2
(C2)

where � is the delay interval, ud is the pilot's delayed control input, and uc is the pilot's
commanded control. In state space form, this is expressed as

d
dt

�
xd1
xd2

�
=

�
0 �16=�2

1 �8=�

��
xd1
xd2

�
+

�
0

�16=�

�
uc

ud = [0 1 ]

�
xd1
xd2

�
+ uc

9>>=
>>; (C3)

where xdi is a delay state.

To account for the uncertainty of the human operator's control input, control noise is added
to the pilot's delayed control input

un = ud + vu (C4)

where vu is a zero mean Gaussian white noise process with covariance Vu.

The pilot's neuromotor dynamics are modelled as a �rst-order lag given by

�

un
=

1

��s + 1
(C5)

The e�ective time delay and �rst-order neuromotor lag are placed at the pilot's output and are
treated as part of the plant dynamics for determination of the pilot's regulation and �lter gains.
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The combined time delay and lag dynamics, in state space form, are given by

d
dt

8<
:
xd1
xd2
�

9=
; =

2
4 0 �16=�2 0

1 �8=� 0

0 1=�� �1=��

3
5
8<
:
xd1
xd2
�

9=
;+

2
4 0

�16=�

1=��

3
5 uc +

2
4 0

0

1=��

3
5 vu

� = [0 0 1 ]

8<
:
xd1
xd2
�

9=
;

9>>>>>>=
>>>>>>;

(C6a)

or
_xd = Adxd +Bduc + Edvu

� = Cdxd

)
(C6b)

The plant, augmented with the neuromotor lag and e�ective time delay dynamics, is given by

d
dt

�
x

xd

�
=

�
A BCd

0 Ad

��
x

xd

�
+

�
0

Bd

�
uc +

�
E 0

0 Ed

��
w

vu

�

y = [C DCd ]

�
x

xd

�
9>>=
>>; (C7a)

or
_xs = Asxs +Bsuc + Esw1

y = Csxs

yobs = Csxs + vy

9>=
>; (C7b)

The pilot's control task is assumed to be modelled as the minimization of the quadratic

performance index Jp given by

Jp = E1

n
yTQyy + (uc)

T ruc

o
(C8)

subject to pilot observations yobs, with cost function weights Qy � 0 and r > 0. The

minimizing control law is obtained by application of LQG solution techniques to the augmented

system. This leads to the full-state feedback relation

uc = �gpx̂s = �r
�1 (Bs)

T Kx̂s (C9)

where x̂s is the estimate of the state xs and K is the unique positive de�nite solution of the

matrix Ricatti equation

0 = (As)
T K+KAs +Q�KBsr

�1 (Bs)
T K (C10)

where Q = CT
sQyCs.

The current estimate of the state is given by a Kalman �lter

_̂xs = Asx̂s +Bsuc +F (yobs � ŷ)

_̂xs = (As � FCs) x̂s + FCsxs +Bsuc + Fvy

)
(C11)

where

F = � (Cs)
T V�1y
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The covariance matrix of the estimation error � is the unique positive de�nite solution of the
matrix Ricatti equation

0 = As�+� (As)
T +W1 �� (Cs)

T V�1y Cs� (C12)

where W1 = diag(W;Vu).

A state space representation of the closed-loop system is given by

d
dt

�
xs
x̂s

�
=

�
As �Bsgp
FCs As �Bsgp � FCs

��
xs
x̂s

�
+

�
Es 0
0 F

��
w1

vy

�
�
yobs
uc

�
=

�
Cs 0
0 �gp

��
xs
x̂s

�
+

�
vy
0

�
9>>=
>>; (C13)

A state space representation of the pilot's dynamics is given by

d
dt

�
x̂s
xd

�
=

�
As �Bsgp � FCs 0

�Bdgp Ad

��
x̂s
xd

�
+

�
F

0

�
y +

�
F 0
0 Ed

��
vy
vu

�

� = [0 Cd ]

�
x̂s
xd

�
9>>=
>>; (C14a)

or
_xp = Apxp +Bpy+Epvp

� = Cpxp

)
(C14b)

25



References

Anderson, Mark R.; and Schmidt, David K. 1987: Closed-Loop Pilot Vehicle Analysis of the Approach and Landing

Task. J. Guid., Control, & Dyn., vol. 10, no. 2, pp. 187{194.

Bacon, Barton J.; and Schmidt, David K. 1983: An Optimal Control Approach to Pilot/Vehicle Analysis and the

Neal-SmithCriteria. J. Guid., Control, & Dyn., vol. 6, no. 5, pp. 339{347.

Baron, S.; Kleinman, D. L.; and Levison, W. H. 1970: An Optimal Control Model of Human Response|Part II:
Prediction of Human Performance in a Complex Task. Automatica, vol. 6, no. 3, pp. 371{383.

Baron, Sheldon; Kleinman, David L.; Miller, Duncan C.; Levison, William H.; and Elkind, Jerome I. 1970:
Application of Optimal Control Theory to Prediction of Human Performance in a Complex Task. Fifth Annual

NASA-University Conference on Manual Control,NASA SP-215, pp. 367{387.

Broussard, John R.; and Stengel, Robert F. 1977: Stability of the Pilot-Aircraft System in Maneuvering Flight.
J. Aircr., vol. 14, no. 10, pp. 959{965.

Elkind, J. I. 1964: A Survey of the Development of Models for the Human Controller. Guidance and Control|II,

Robert C. Langford and Charles J. Mundo, eds., Academic Press, pp. 623{643.

Hess, Ronald A. 1976: A Method for Generating Numerical Pilot Opinion Ratings Using the Optimal Pilot Model.

NASA TM X-73,101.

Innocenti, Mario 1988: The Optimal Control Pilot Model and Applications. Advances in Flying Qualities,

AGARD-LS-157, pp. 7-1{7-17.

Kleinman, D. L.; Baron, S.; and Levison, W. H. 1970: An Optimal Control Model of Human Response|Part 1:
Theory and Validation. Automatica,vol. 6, no. 3, pp. 357{369.

Kwakernaak, Huibert; and Sivan, Raphael 1972: Linear Optimal Control Systems. John Wiley & Sons, Inc.

McRuer, D. 1980: Human Dynamics in Man-Machine Systems. Automatica,vol. 16, no. 3, pp. 237{253.

Schmidt, David K. 1979: Optimal Flight Control Synthesis Via Pilot Modeling. J. Guid. & Control, vol. 2, no. 4,

pp. 308{312.

Schmidt, David K. 1981: On the Use of the OCM's Quadratic Objective Function as a Pilot Rating Metric.

Proceedingsof the SeventeenthAnnual Conferenceon Manual Control,JPL Publ. 81-95, pp. 305{313. (Available

as NASA CR-165005.)

26


